

ВОПРОСЫ ТЕХНИЧЕСКИХ И ФИЗИКО-МАТЕМАТИЧЕСКИХ НАУК В СВЕТЕ СОВРЕМЕННЫХ ИССЛЕДОВАНИЙ

Сборник статей по материалам XXVIII международной научно-практической конференции

> № 6 (22) Июнь 2020 г.

Издается с августа 2017 года

Новосибирск 2020 Председатель редакционной коллегии:

Ахметов Сайранбек Махсутович – д-р техн. наук, проф., академик Национальной инженерной академии РК и РАЕН, профессор кафедры "Механика" Евразийского национального университета им. Л.Н. Гумилева, руководитель Казахского отделения (г. Астана) международной научной школы устойчивого развития им. ак. П.Г. Кузнецова.

Редакционная коллегия:

Антифеева Елизавета Львовна – кандидат педагогических наук, доцент, преподаватель кафедры физики Военно-космической академии имени А.Ф. Можайского, г. Санкт-Петербург;

Ахмеднабиев Расул Магомедович – канд. техн. наук, доц. Полтавского национального технического университета им. Ю. Кондратюка;

Бондарев Андрей Владимирович – канд. техн. наук, зав. кафедрой электроснабжения промышленных предприятий Кумертауского филиала ФГБОУ ВО «Оренбургский государственный университет», г. Кумертау;

Елисеев Дмитрий Викторович – канд. техн. наук, доцент, бизнесконсультант Академии менеджмента и рынка, ведущий консультант по стратегии и бизнес-процессам, «Консалтинговая фирма «Партнеры и Боровков»;

Каракеян Валерий Иванович – д-р техн. наук, проф. кафедры промышленной экологии Национального исследовательского университета «Московский институт электронной техники», г. Зеленоград;

Королев Владимир Степанович – канд. физ.-мат. наук;

Немирова Любовь Федоровна – канд. техн. наук, доц. кафедры конструирования и технологии изделий легкой промышленности, ГБОУ ВПО «Омский государственный технический университет», «Институт дизайна и технологий», г. Омск;

Рымкевич Павел Павлович – д-р техн. наук, канд. физ.-мат. наук, доцент, профессор кафедры физики Военно-космической академии им.А.Ф. Можайского (Санкт-Петербург), член-корреспондент Международной академии наук экологии, безопасности человека и природы, член Экспертного совета по энергоэффективности зданий и сооружений Санкт-Петербурга.

В74 Вопросы технических и физико-математических наук в свете современных исследований / Сб. ст. по материалам XXVIII междунар. науч.-практ. конф. № 6 (22). Новосибирск: Изд. ООО «СибАК», 2020. 86 с.

Учредитель: ООО «СибАК»

Статьи сборника «Вопросы технических и физико-математических наук в свете современных исследований» размещаются в полнотекстовом формате на сайте научной электронной библиотеки eLIBRARY.RU.

При перепечатке материалов издания ссылка на сборник статей обязательна.

ISSN 2618-6659

© ООО «СибАК», 2020

Оглавление

Информационные технологии	5
Секция «Математическое моделирование, численные методы и комплексы программ»	5
ПРИМЕР ОЦЕНКИ ПАРАМЕТРОВ НАДЕЖНОСТИ ПРИ НОРМАЛЬНОМ ЗАКОНЕ РАСПРЕДЕЛЕНИЯ ОТКАЗОВ Ковальчук Владимир Васильевич Бурзун Марина Сергеевна	5
Секция «Теоретические основы информатики»	16
АДАПТИВНЫЙ ГЕНЕТИЧЕСКИЙ АЛГОРИТМ НА ОСНОВЕ ПРОИЗВОЛЬНОЙ ОЦЕНКИ КОМПЛЕКСА ИНФОРМАТИВНЫХ ПРИЗНАКОВ Джураев Гуломжон Примович	16
Технические науки	20
Секция «Аэрокосмическая техника и технологии»	20
ИЗМЕРЕНИЕ ОБЪЕМОВ В РАКЕТОСТРОЕНИИ МЕТОДОМ БЕСКОНТАКТНОГО ИЗМЕРЕНИЯ Ширшов Евгений Олегович Козлов Сергей Вадимович	20
Секция «Информатика, вычислительная техника и управление»	28
МЕТОДИКА ОБНАРУЖЕНИЯ ВКЛЮЧЕНИЙ ПРИ МИКРОСКОПИИ В МЕТАЛЛОГРАФИИ Назаренко Мария Андреевна	28
Секция «Материаловедение и металлургическое оборудование и технологии»	37
ОПРЕДЕЛЕНИЕ ПОЛОЖЕНИЯ ЦЕНТРА ДАВЛЕНИЯ ПРИ ШТАМПОВКЕ Казадаева Ольга Анатольевна Пчельников Алексей Викторович	37
ПРОГНОЗИРОВАНИЕ ПОВЕРХНОСТНЫХ ДЕФЕКТОВ ПРИ ОБЪЕМНОЙ ШТАМПОВКЕ Филякова Виктория Александровна Пчельников Алексей Викторович	42

Секция «Машиностроение и машиноведение»	48
РАСЧЕТ ГЕОМЕТРИИ ПОСТОЯННЫХ МАГНИТОВ В КОЛЬЦЕВОМ ПАЗУ МАГНИТНОЙ СИСТЕМЫ МЖУ Маслов Павел Павлович	48
РОБОТИЗИРОВАННЫЙ ПОГРУЗЧИК ДЛЯ МАНИПУЛИРОВАНИЯ ГРУЗОМ Соснин Руслан Рустамович	66
Секция «Сельское и лесное хозяйство, агроинженерные системы»	78
АВТОМАТИЧЕСКИЕ СИСТЕМЫ СТАБИЛИЗАЦИИ УРОВНЕЙ ВОДЫ С РЕГУЛЯТОРАМИ ДИСКРЕТНОГО ДЕЙСТВИЯ Казаков Эргаш Ахмадович	78

СЕКЦИЯ

«МАШИНОСТРОЕНИЕ И МАШИНОВЕДЕНИЕ»

РАСЧЕТ ГЕОМЕТРИИ ПОСТОЯННЫХ МАГНИТОВ В КОЛЬЦЕВОМ ПАЗУ МАГНИТНОЙ СИСТЕМЫ МЖУ

Маслов Павел Павлович

канд. техн. наук, директор, ООО "ИнТек Техно", РФ, г. Новосибирск E-mail: <u>maslov_p@ngs.ru</u>

АННОТАЦИЯ

В работе рассмотрены вопросы расчета геометрии сечения кольцевых, дисковых, прямоугольных и трапецеидальных ПМ, в том числе и со скруглениями боковых граней. Определены геометрические параметры системы ПМ в кольцевом пазу: максимальное число ПМ, площадь одного и суммарная площадь ПМ и коэффициент заполнения кольцевого паза ПМ. Определено, что суммарная площадь ПМ в кольцевом пазу СМ для дисковых и прямоугольных ПМ имеет максимум. Полученные соотношения имеют аналитический характер и имеют назначение быть основой математической модели геометрического блока программы расчета оптимальной геометрии МЖУ.

Ключевые слова: система магнитная, кольцевой паз, постоянный магнит дисковый, прямоугольный, трапецеидальный, скругление боковых граней.

Принятые сокращения:

МЖУ – Магнитожидкостное уплотнение;

ПМ – Постоянный магнит;

СМ – Система магнитная;

В настоящее время МЖУ находят широкое применение в качестве уплотнительных элементов устройств, с внутренним давлением отличающимся от давления окружающей среды или равным, но требующим их разделения, например, по требованиям безопасности. Источником магнитного поля в рабочем зазоре, как правило, служат постоянные магниты кольцевой, дисковой, прямоугольной или трапецеидальной формы. В задачи настоящей работы входят:

• Получение аналитических зависимостей, описывающих геометрию группы ПМ, указанных выше форм, расположенных в кольцевом пазу СМ. Зависимости необходимы для проведения численных расчетов оптимальной геометрии СМ и МЖУ в целом;

• Оценка влияния геометрии ПМ и СМ на их

а) Суммарную площадь в кольцевом пазу $-s_m$.

б) Коэффициент заполнения кольцевого паза ПМ -
 k_s (для дисковых ПМ).

Указанные параметры могут быть использованы в качестве частных функций цели при оптимизации СМ в составной функции цели [5, с. 146] оптимизации МЖУ;

• Разработка рекомендаций по выбору геометрии ПМ, обеспечивающей при заданной его форме, оптимум частным функциям цели.

Поставленная задача решалась аналитически и численными методами с использованием графического редактора КОМПАС в18.1 и MAPLE v18 для обработки результатов расчетов.

Рисунок 1. Варианты исполнений индукторов МЖУ: а – магнитопровод сборный; б – магнитопровод цельный. 1 – магнитопровод, 2 – наконечник полюсный, 3 – проставка немагнитная, 4 – кольцо уплотнительное, 5 - ПМ

В настоящее время разработано достаточно большое количество конструктивных вариантов исполнения зоны расположения ПМ МЖУ в магнитопроводе. В работе рассматриваются СМ (см. рис.1) аксиальных МЖУ, рабочий зазор которых образуется цилиндрическими или коническими поверхностями магнитопровода и вала.

При этом ПМ, как правило, устанавливаются в кольцевые пазы. На рис.1а изображено МЖУ с разъемным, а на рис.16 с неразъемным (цельным) магнитопроводами. Разъемное исполнение обладает меньшим рассеянием магнитного потока, за счет исключения ферромагнитной перемычки, а также позволяет использовать кольцевые ПМ. Неразъемное же проще как конструктив: исключает сборку магнитопровода и обеспечивает полную герметичность на всей длине магнитопровода из-за отсутствия зазоров в соединениях.

Обозначения на рисунках 1:

D_i, *D_e* – внутренний и наружный диаметры магнитопровода, мм.;

D_{mi}, *D_{me}* – внутренний минимальный и наружный максимальный диаметры расположения ПМ. Из конструктивных и технологических соображений должны выполняться условия:

$$D_{mi} > D_i \tag{a} (1)$$

$$D_{me} = D_e - 2 \cdot \Delta_e, \tag{6}$$

где: $\Delta_e = (0,1...0,5) - радиальный технологический зазор между высту$ пающей частью ПМ и наружным (посадочным) диаметром магнитопровода, обеспечивающий ввод СМ в корпус МЖУ без контакта ПМс корпусом, мм.

Как правило, хотя бы для одного из подшипников (не показаны) соблюдается равенство наружного диаметра подшипника наружному (посадочному) диаметру магнитопровода:

$$D_{nej} = D_e, j = 1, 2,$$
 (B)

где *D_{ne}*- наружный диаметр подшипника, мм.

Рисунок 2. Форма исполнения ПМ: а-кольцевая, б - дисковая

Перейдем к относительным величинам, приняв:

$$\alpha' = \pi/N_{max} \text{ и } \propto = \pi/N \tag{a} (2)$$

$$N \le N_{max}$$
 (6)

$$d_{me} = D_{me}/D_{me} = 1 \tag{B}$$

$$0 \le d_{mi} = D_{mi}/D_{me} < 1 \tag{(r)}$$

$$d_{ni} = D_{nij}/D_{nej}, j = 1,2$$
 (д)

$$s_c = \pi (1 - d_{mi}^2)/4$$
 (e)

$$s_m = N_{max} \cdot s_{m1} \tag{(W)}$$

где: α' -Центральный угол половины шага ПМ при $\nu = 0$ (см. рис.2, 3 и 4);

N_{max} – Максимальное число ПМ в кольцевом пазу при их плотной укладке, т. е. касании;

N-Целое число ПМ при ν ≥ 0;

 d_{me} , d_{mi} — Относительные наружный и внутренний диаметры расположения ПМ (вписанная и описанная касательные окружности к контурам ПМ);

*d*_{*ni*} – Относительный внутренний диаметр подшипника;

s_c – Относительная площадь кольца паза расположения ПМ (известное уравнение площади кольца);

 s_m – Относительная суммарная площадь ПМ в одном кольцевом пазу СМ при s_{m1} –относительной площади одного ПМ с заданной по рис.2, 3 и 4 формой. Площадь одного ПМ равна $S_{m1} = s_{m1} \cdot D_{me}^2$, мм².

Рисунок 3. Прямоугольные формы исполнения ПМ: a – без скругления граней, б – со скруглениями внутренних граней, в – со скруглениями внутренних и наружных граней

Рисунок 4. Трапецеидальные формы исполнения ПМ: а – сочетания исполнений внутренних и наружных боковых поверхностей по дуге окружности и хорде без их скругления, б – то же, но со скруглениями боковых поверхностей

Общая площадь ПМ s_m и ее отношение к площади кольца по (1д) - k_s приняты в рамках настоящей работы функциями цели [5, с. 146]. Они, хотя и косвенно, характеризуют возможности МС по уровню создаваемого магнитного потока. Действительно, ПМ на основе самарий-кобальтовых или неодим-железо-бор сплавов имеют достаточно "жесткие" характеристики B = f(H), что позволяет считать их "источниками" потока, и, следовательно, при прочих равных условиях считать, что магнитный поток через нейтральное сечение ПМ пропорционален их площади. В свою очередь, указанные параметры могут быть использованы как частные функции цели в составной функции цели при оптимизационных расчетах МЖУ, обеспечивающей максимальный поток в СМ.

В таблице 1 приведены значения d_{mi} для изготовленных ООО "ИнТек Техно" г. Новосибирск МЖУ и d_{ni} для применяемых в них стандартных шариковых подшипниках:

Таблица 1	1.
-----------	----

Диаметр вала, мм.	Форма вала	Рисунок	<i>d_{ni}</i> по (2д)	d _{mi} по (2г)
6	Цельный	16	0,4118	0,6385
10	Цельный	1a	0,375	0,5793
25	Полый	1a	0,6364	0,7481
38	Цельный	16	0,5882	0,7321
40	Полый	16	0,625	0,674
40	Полый	16	0,625	0.7481
58	Полый	1a	0,7647	0,8245

Из таблицы 1 следует, что $d_{mi} > d_{ni}$. При этом значение последнего может служить некоторой "реперной" точкой, определяющей возможный диапазон варьирования d_{mi} :

$$d_{ni} < d_{mi} < 1 \tag{2u}$$

Как правило, используемые ПМ (см. рис.2, 3 4) имеют кольцевую, дисковую, прямоугольную или трапецеидальную форму, применение которых объясняется простотой их изготовления, удобством установки в кольцевой паз магнитопровода при обеспечении требуемых параметров магнитного поля в зазоре. Очевидно, что три последних варианта формы ПМ после установки их в кольцевой паз магнитопровода нарушают изотропию распределения материала ПМ в кольцевом пазу в тангенциальном направлении и для корректного расчета распределения магнитного поля в элементах МЖУ требуют использования 3d расчетных моделей. И хотя ПМ отделены от рабочего зазора ферромагнитной средой, выравнивающей неравномерное (периодическое) распределение магнитного потока за счет перераспределения потоков в тангенциальном направлении. (см [3, с. 148-149]), предпочтительным все же можно считать расчет реального трехмерного распределения магнитного поля в рабочем зазоре. Поэтому программа оптимизации МЖУ должна учитывать факт дискретного расположения ПМ в кольцевом пазу и базироваться на математических моделях расчета геометрии ПМ и СМ, учитывающих общую форму ПМ и детали его геометрии, в том числе и скругления или фаски на ребрах пересекающихся боковых граней ПМ. Эти модели должны содержать явно и неявно выраженные соотношения и легко поддаваться программированию при разработке подпрограмм расчета геометрии группы ПМ в кольцевом пазу и указанных частных функций цели.

При $\nu = 0$ для всех указанных исполнений ПМ (кроме кольцевых) получается максимально плотная укладка ПМ в тангенциальном направлении кольцевого паза магнитопровода, когда сопряженные магниты касаются друг друга.

• Геометрия кольцевого ПМ (рис.2а) общеизвестна, его площадь – площадь кольца приведена в (2е), а коэффициент заполнения паза равен 1.

• Дисковые ПМ, (рис.2б). Форма ПМ исключает скругления боковых граней. В этом случае при v = 0 геометрия ПМ и СМ описывается сравнительно простыми выражениями (см. рис.5а):

$$N_{max} = \pi/\arcsin\left[(1 - d_{mi})/(1 + d_{mi})\right] \ge N = \text{II. Y.} \quad (a) (3)$$

$$d_m = (1 - d_{mi})/2,$$
 (6)

где: *d_m* – Относительный диаметр магнита.

Рисунок 5. Относительные: а – геометрические параметры СМ (по рис. 2б); б – суммарная площадь ПМ и коэффициент заполнения кольцевого паза магнитопровода от относительного диаметра дискового ПМ

Относительные суммарная площадь ПМ и коэффициент заполнения кольцевого паза СМ могут быть представлены в виде (см.рис.5б):

$$s_m = (\pi/4)^2 \cdot (1 - d_{mi})^2 / arcsin(K_d)$$
 (a) (4)

$$k_s = s_m/s_c = (\pi/4) \cdot K_d / \arcsin(K_d)$$
(6)

где $K_d = (1 - d_{mi})/(1 + d_{mi}).$

Из рис.56 следует, что относительная суммарная площадь ПМ имеет максимум $s_{m_max} = 0,54116$ при $d_{mi \ opt} = 0.2107$. Полученное значение оптимального внутреннего диаметра расположения ПМ существенно меньше d_{mi} из таблицы 1. Реальные s_m для значений d_{mi} из таблицы 1 при этом составляют (0.37...0,74) от их максимального значения т. е. в (2,7...1,35) раза меньше возможных. Столь низкая реализация потенциальных возможностей дисковых ПМ в кольцевом пазу позволяет сделать вывод о необходимости тщательного подхода при выборе их для СМ с кольцевыми пазами. Их применение рационально в специальных конструкциях МЖУ, например, с отношением диаметров $d_{mi} \approx d_{mi \ opt}$ или в МЖУ, играющих роль буфера – разделителя от агрессивной среды или при сверхглубоком вакууме для отделения от него подшипника МЖУ.

Эти МЖУ играют вспомогательную роль и удерживают сравнительно небольшую часть приложенного к МЖУ перепада давления.

В соответствии с рис.56 коэффициент заполнения кольцевого паза СМ монотонно растет во всем диапазоне изменения d_{mi} и изменяется в пределах $1/2 \le k_s \le \pi/4$. В связи с отсутствием максимума у указанного параметра его удобно использовать как ограничение.

Таким образом, при заданном d_{mi} по (3) можно рассчитать число магнитов N_{max} и их диаметр d_m при v = 0. Первый параметр должен быть целым числом, определить которое можно обработкой полученных действительных чисел, например, в редакторе Maple, получая ближайшее меньшее целое число ПМ

$$N \le floor(N_{max}). \tag{a} (5)$$

По аналогии с (1а) угловой шаг магнитов в тангенциальном направлении в этом случае удовлетворяет второму соотношению (2а).

В соответствии с нормативными документами, например, [1, с. (20-36); 2, с. (18-33)] диаметры дисковых ПМ заданы в мм. и являются, как правило, целыми числами в миллиметрах. Приоритет применения данной размерной единицы в ТУ, скорее всего, обуславливается требованием простановки размеров в КД в мм. [4, п. 4.7].

Для получения целых значений диаметров ПМ также используем процедуру получения ближайшего меньшего целого числа:

$$D_m \le floor(D'_m = d_m \cdot D_{me}) \tag{6}$$

Введем коэффициент отклонения целого диаметра ПМ от расчетного

$$k_{dm} = D_m / D'_m \le 1 \tag{B}$$

Очевидно, чем больше указанный коэффициент, тем ближе лежит целый диаметр магнита к расчетному, тем плотнее будут уложены ПМ. На рис.6а и 6б представлены допустимые значения числа ПМ, удовлетворяющие заданному диапазону отклонений k_{dm} . Точки, лежащие на оси абсцисс, не удовлетворяют указанному диапазону. Для выбора пар D_m и N, удовлетворяющих принятому диапазону k_{dm} , служит подпрограмма их расчета.

Не имеет принципиального значения округление по (46) не до ближайших целых, а до ближайших меньших целых табличных значений D_m , приведенных в ТУ на ПМ [1, с.20-36, 2, с.18-33]. В этом случае диаметр магнита будет не только целым, но и соответствовать

диаметру по ТУ.В случае наличия размеров, заданных с точностью до 0,1 мм., получение табличного значения можно проводить в системе единиц 0,1 мм.

Рисунок 6. Число ПМ, удовлетворяющих заданному диапазону допустимых Kdm по (4в)

Для СМ с **прямоугольными ПМ** введем относительные размеры сторон (см. рис.3 а, б и в)

$$a = \frac{A}{D_{me}}, \qquad b = \frac{B}{D_{me}} \tag{6}$$

При предельной укладке прямоугольных ПМ по окружности СМ, т.е. при $\nu = 0$ по аналогии с (3) получим:

$$N_{max} = \frac{\pi}{\operatorname{arctg}\left(\frac{b}{d_{mi}}\right)}$$
(a) (7)

$$a = \frac{1}{2} \cdot \left[\sqrt{(1-b^2)} - d_{mi} \right].$$
(6)

Процедура нахождения целых чисел ПМ и размеров сторон аналогична (5а и 56).

Из (7б) и рис.За следует, что должно выполняться условие

$$b < b_{max} = \sqrt{(1 - d_{mi}^2)}$$
 (B)

На рис. 7 представлены графики зависимости N_{max} по (7а). Следует отметить, что при $d_{mi} \rightarrow 0, N_{max} \rightarrow 2$.

Суммарная площадь ПМ и заполнение кольцевого паза имеют вид

$$s_m = a \cdot b \cdot N_{max} \tag{a} (8)$$

$$k_s = \frac{4}{\pi} \cdot \frac{s_m}{(1 - d_{mi}^2)} \tag{6}$$

Рисунок 7. Число ПМ от внутреннего диаметра dmi и ширины b ПМ (по рис. 2в); а – 3d и б – 2d варианты

Их графики представлены на фиг. 8 и 9. Обе зависимости имеют максимумы как по внутреннему диаметру, так и по ширине магнита до некоторых их критических значений после чего характер их изменения s_m и k_s становится монотонным. Переход к монотонному характеру изменения указанных функций происходит при критических значениях $b_{kr \ sm} \ge 0.53703$ и $b_{kr \ ks} \ge 0.58867$.

Рисунок 8. Зависимости суммарной площади ПМ от внутреннего диаметра dmi и ширины b ПМ; a – 3d и б – 2d варианты

Рисунок 9. Зависимости коэффициента заполнения паза под ПМ ks от внутреннего диаметра dmi и ширины b ПМ; a – 3d и 6 – 2d варианты

Уравнения (7а) и (7б) содержат два независимых параметра. Это позволяет, в отличие от дисковых ПМ, дополнительно варьировать еще одним и при общей оптимизации МЖУ поддерживать достаточно высокий уровень частных функций цели по (8а) и (8б), учитывая наличие у них максимумов. Оптимальные параметры, обеспечивающие максимум s_{mmax} и k_{smax} , представлены на рис.10. Как следует из рис.10а максимальная суммарная площадь ПМ практически инвариантна относительно оптимальной ширины ПМ и не превышает (0,7...0.75) максимальной суммарной площади дисковых ПМ (см. рис.3а). Иными словами, прямоугольные ПМ без скруглений имеют меньшую максимальную площадь, но сохраняют достаточно высокий ее уровень в области $0.1 \le d_{mi} < 0.5$.

Рисунок 10. Зависимости оптимальных параметров от ширины b ПМ; $a - npu s_m \rightarrow max u \delta - npu k_s \rightarrow max$

Выполнение скруглений боковых граней ПМ возможно двумя вариантами их исполнения(см. рис.36 и 3в). В первом - скругления выполнены с одной стороны ПМ (см. рис.36), во втором – скруглены все боковые грани. (Как показывает опыт сотрудничества с заводами изготовителями ПМ затруднений с изготовлением ПМ любой формы со скруглениями и без не возникает). Скругления на внутреннем диаметре расположения ПМ позволяет уплотнить укладку ПМ и увеличить их количество в пазу МС. При v = 0 контакт ПМ между собой происходит не по ребрам, а по скруглениям. Уравнение для расчета числа постоянных магнитов с скруглениями имеет вид:

$$N_{r max} = \frac{\pi}{\operatorname{arctg} \left[\frac{b_{r} - 2 \cdot r \cdot (1 - \cos(\pi/N_{r max}))}{d_{mir} + 2 \cdot r \cdot (1 - \sin(\pi/N_{r max}))} \right]} = \frac{\pi}{\left[\operatorname{arcsin} \left(\frac{2 \cdot r}{(c^{2} + p^{2})^{1/2}} \right) - \varphi \right]},$$
 (a) (9)

где $r = \frac{R}{D_{me}}$ (б)

 $c = d_{mir} + 2 \cdot r \tag{B}$

$$p = b_r - 2 \cdot r \tag{(r)}$$

$$\varphi = \operatorname{arctg}\left(-\frac{p}{c}\right). \tag{d}$$

Длина второй стороны ПМ

$$a_r = \frac{1}{2} \cdot \left[(1 - 2 \cdot r) \cdot \cos \gamma - d_{mi} + 2 \cdot r \right].$$
 (e)

Здесь $\gamma = \arcsin[(b_r - 2 \cdot r)/(1 - 2 \cdot r)].$ Очевидно, при расчете геометрии МС должны выполняться условия

 $b_r \ge 2 \cdot r$ (рис. 2г, 2д); $a_r \ge r$ (рис. 2г); $a_r \ge 2 \cdot r$ (рис. 2д) (ж)

На рис. 11 представлены отношения числа ПМ со скруглениями к числу ПМ без скруглений - $N_{r\,max}/N_{max}$, полученные из условий равенства внутренних диаметров $d_{mir} = d_{mi}$ и ширины магнитов $b_r = b$. Зависимости имеют максимумы, которые возрастают с ростом отношения r/b_r , что указывает на эффективность увеличения радиуса скругления граней ПМ с точки зрения увеличения количества ПМ.

Рисунок 11. Зависимости отношений числа прямоугольных ПМ со скруглениями граней к числу ПМ без скруглений; $a - r/b_r = 0.1, 6 - r/b_r = 0.2$

Суммарная площадь ПМ с учетом скруглений

$$s_m = s_{mn} - k_n \cdot r^2 \cdot N_{max} \cdot (4 - \pi)/2,$$
 (10)

где $k_n = 1$ для ПМ по рис. 2г и $k_n = 2$ для ПМ по рис. 2д.

Рисунок 12. Зависимости суммарной площади прямоугольных ПМ со скруглениями граней при r = 0.15; a – 3d и 2d варианты

На рис. 12 представлены зависимости безразмерной суммарной площади ПМ от внутреннего диаметра их расположения и ширины ПМ. Минимальное значение ширины ПМ b_r выбирается из первого члена соотношения (9ж).

Зависимости имеют ярко выраженные максимумы. При этом, до некоторого критического значения (в данном случае это $2 \cdot r \leq b_r \leq b_{r\,kr} = 0,80173$) кривые имеют максимум, после чего они монотонно изменяются, достигая максимума при нулевых значениях d_{mi} . Самое важное, что максимумы s_m распределены в широком диапазоне изменения d_{mi} и b_r .Это позволяет при варьировании указанных параметров обеспечивать достаточно высокий уровень s_m .

Эффективность скругления граней ПМ показана на рис.13, где представлены максимальные значения суммарной площади ПМ. В качестве аргумента выбрана оптимальная ширина ПМ, при которой обеспечивается максимум S_m .

Рисунок 13. Рисунок 14. Зависимости суммарной отношения расстояний полок ПМ площади прямоугольных ПМ от центра СМ со скруглениями со скруглениями граней r/b_r = 0.2 к ПМ без скруглений

Расчеты проведены при $r/b_r = 0,2$ для четырех значений r, в том числе и варианта без скруглений боковых граней. Из графиков следует, что с увеличением радиусов скруглений s_m .увеличивается (за счет увеличения числа ПМ) и при r > 0.1 прямоугольные ПМ со скруглениями имеют бОльшую площадь, нежели дисковые. Вместе с тем, уже при $r \approx 0,17$ перестают удовлетворяться условия для a_r по (9ж) и геометрия ПМ перестает соответствовать рис.36 и 3в.Таким образом, можно рекомендовать радиусы скругления $0.05 \leq r < 0.17$.

Наиболее плотную укладку обеспечивают **ПМ трапецеидальной** формы (см. рис.4а). Очевидно, кольцевой ПМ может быть разбит на произвольное число *N* трапецеидальных ПМ, независимое от геометрии кольцевого паза СМ. Площади сечения одного ПМ с учетом (2a) при v = 0 имеют вид:

$$s_{m1_cc} = \frac{\alpha'}{4} \left(1 - d_{mi}^2\right)$$
 (a) (11)

$$s_{m1_hh} = \frac{\operatorname{tg} \alpha'}{4} \cdot \left[\cos^2(\alpha') - d_{mi}^2 \right]$$
(6)

$$s_{m1_ch} = \frac{1}{4} \cdot (\cos \alpha' \cdot \sin \alpha' - \alpha' \cdot d_{mi}^2)$$
 (B)

$$s_{m1_hc} = \frac{1}{4} \cdot (\alpha' - \mathrm{t}g \,\alpha' \cdot d_{mi}^2) \tag{r}$$

где c и h – индексы, относящиеся к исполнениям внутренней и наружной частей по дуге окружности или по хорде, соответственно. Следует отметить, что некоторые соотношения известны как площади секторов окружностей.

В отличие от прямоугольных ПМ, где скругления боковых граней влияют на распределение и количество ПМ в кольцевом пазу, для трапецеидальных ПМ скругления не оказывают влияния на указанные параметры а лишь изменяют (уменьшают) их площади. Очевидно, суммарная площадь ПМ может быть представлена в виде

$$s_{m_ij} = N_{max} s_{m1_ij}, \tag{12}$$

где индексы *ij* – определяют исполнение внутренней и наружной частей ПМ по ((11а) – (11г)).

При наличии радиусов скруглений по (9б) площадь одного выреза от скругления может быть выражена следующими соотношениями (см. рис.4б):

• Для внутренней части скруглений:

• При скруглении внутренней поверхности ПМ по дуге окружности:

$$s_{1ic} = \frac{r}{2} \cdot \left(\frac{d_{mi}}{2} + r\right) \cdot \cos \eta - \frac{d_{mi}^2 \cdot \eta}{8} \cdot - \frac{r^2}{2} \cdot \left(\frac{\pi}{2} - \eta\right), \quad (a) (13)$$

где $\eta = \arcsin(\frac{r}{\frac{d_{mi}}{2}+r}).$

• При скруглении внутренней грани ПМ по хорде:

$$s_{1ih} = r^2 \cdot [tg(\varepsilon) - \varepsilon]$$
 (6)

где $\varepsilon = \frac{1}{2} \cdot \left(\frac{\pi}{2} - \alpha'\right).$

• Для наружной части скруглений:

• При скруглениях наружной поверхности ПМ по дуге окружности:

$$s_{1ec} = \frac{\gamma}{8} - \frac{r}{2} \cdot \left(\frac{1}{2} - r\right) \cdot \cos(\gamma) - \frac{r^2}{2} \cdot \left(\frac{\pi}{2} + \gamma\right), \qquad (B)$$

где $\gamma = \arcsin[\frac{r}{\left(\frac{1}{2}-r\right)}].$

Из уравнения для γ следует, что должно выполняться условие

$$r \leq \frac{1}{4}$$
. (r)

В случае выполнения грани ПМ, расположенной в зоне наружного диаметра кольцевого паза магнитопровода, по хорде, скругление вызывает изменение положения наружной грани ПМ (переход грани из точки А в точку Б). Площадь одного ПМ со скруглениями, в отличие от (116 и 11в) будет иметь вид:

$$s_{m1_hh_r} = tg(\alpha') \cdot \left(K_r^2 - \frac{d_{mi}^2}{4}\right) - 2 \cdot (s_{1ih} + s_{1eh}) \quad (a)(14)$$

$$s_{m1_ch_r} = tg(\alpha') \cdot K_r^2 - \alpha' \cdot \frac{d_{mi}^2}{4} - 2 \cdot (s_{1ic} + s_{1eh})$$
(6)

где

$$K_r = \left[\left(\frac{1}{2} - r\right) \cdot \cos(\alpha' - \gamma) + r \right]$$
(B)

Отношение расстояний полок ПМ от центра кольцевого паза магнитопровода (см. рис.4б) от числа ПМ N_{max} и радиуса скругления r представлено на рис 14 и имеет вид

$$otnd = \frac{lr}{l} = \frac{OP}{OU} = (1 - 2 \cdot r) \cdot \frac{\cos(\alpha' - \gamma)}{\cos(\alpha')}$$
(r)

Из рисунка следует, что существует достаточно широкая область параметров, где это отношение больше 1, т.е. полки со скрутлениями располагаются дальше от центральной оси. Изменение положения грани ПМ приводит к изменению его площади, которая при определенных условиях больше, чем исходная по (116). На рис.15 представлено отношение площади ПМ со скруглениями (14а) к площади без скруглений по (116 и 11в). Например, для (11б), имеем

$$otn := \frac{S_{m1_hh_r}}{S_{m1_hh}}$$
(15)

Из рисунка следует, что при определенных условиях площадь ПМ со скруглениями больше площади ПМ без скруглений. С ростом числа ПМ этот эффект снижается, а диапазон радиусов скругления, при котором *otn* = 1, сужается.

Рисунок 15. Отношение площадей ПМ по (15) при $d_{mi} = 0.7$

Дополнительно отметим, что при выполнении наружной грани по хорде (рис. 46) площадь одного выреза от скругления равна

$$s_{1eh} = \frac{r}{2} \left(\frac{1}{2} - r \right) \left\{ \left[\cos(\alpha' - \gamma) + \sin(\gamma) \right] \operatorname{tg}(\alpha') - \sin(\alpha' - \gamma) + \frac{\sin(\gamma)}{\cos(\alpha')} \right\}$$
(16)

В результате, суммарная площадь трапецеидальных ПМ (кроме ПМ по рис. 46) может выражена в виде:

$$s_{m_{ij}r} = N_{max} \left[s_{m1_{ij}} - 2 \left(s_{e1_{ij}} + s_{i1_{ej}} \right) \right], \tag{17}$$

где индекс ј обозначает вариант выполнения скругления: с- по дуге окружности и h-по хорде. При выполнении скруглений наружных граней, одна из которых выполнена по хорде, расчет следует вести по (14а) и (14б). Следовательно, при выполнении наружной грани ПМ по дуге окружности скругление граней лишь уменьшает суммарную площадь ПМ. Скругление наружных граней ПМ по хорде приводит в некоторой области параметров к увеличению суммарной площади ПМ. Это отражено на рис.15

Выводы:

• В работе получены аналитические соотношения для расчета геометрии СМ и ПМ с дисковой, прямоугольной и трапецеидальной формой сечения, позволяющие учитывать радиусы скруглений боковых граней ПМ. Указанные соотношения сравнительно просто могут быть использованы в аналитических и численных исследованиях МС с расположением ПМ по окружности, в частности, в кольцевом пазу.

• Задание и учет в расчетной модели МЖУ геометрии ПМ со скруглениями граней позволяет повысить информативность расчетов СМ и рассчитывать не только общие параметры магнитного поля в рабочем зазоре, но и с большей точностью учитывать, например, кромочные эффекты, возникающие при разного рода резких неоднородностях геометрии и/или материалов СМ.

• Суммарная площадь дисковых ПМ при постоянном внешнем диаметре кольцевого паза имеют максимум $s_{m max} = 0,54116$, получаемый при значении $d_{mi \ opt} = 0,2107$. Относительный внутренний диаметр расположения ПМ в изготовленных МЖУ, как правило, существенно больше и составляет по грубой оценке (см табл.1) (0,58...0,73) для МЖУ с цельным валом и (0,67...0,82) для МЖУ с полым валом. Таким образом, дисковые ПМ обеспечивают лишь (0,57...0,76) и (0,33...0,61) от максимально возможной суммарной площади в пазу СМ. Следует ожидать, поэтому, и заметного снижения средней индукции в рабочем зазоре МЖУ по сравнению с кольцевым ПМ.

• Достаточно перспективной является прямоугольная форма ПМ с скруглениями боковых граней или фаской. Такая форма позволяет увеличить суммарную площадь ПМ в пазу в (1,22...1,87) и (1,52...3,22) раза по сравнению с дисковыми ПМ для МЖУ с цельным и полым валами (см. рис.13). По сравнению с прямоугольными ПМ без скруглений суммарная площадь ПМ со скруглениями может быть увеличена в (1.3...1.5). Последняя цифра для исполнения ПМ со скруглениями только с одной стороны по отношению к размеру А (см. рис. 36). При этом скругления ПМ следует располагать со стороны внутреннего диаметра кольцевого паза СМ. Важно, что суммарная площадь ПМ практически инвариантна относительно широкого диапазона изменения размера $b_{r ont}$;

• Как следствие, при оптимизационных расчетах МЖУ наличие максимума суммарной площади ПМ дает возможность организации вычислений оптимальных МЖУ по составной функции цели [5, с.146], учитывающей с некоторым весовым коэффициентом дополнительные функции цели. В их качестве, в данном случае, могут быть приняты указанные выше s_m и k_s . В этом случае, если считать ПМ источниками

потока ("жесткая" характеристика $B(H) \cong const$), указанные дополнительные функции цели при их максимуме будут обеспечивать максимальный поток через магниты, т.е. их максимальное использование. В общем случае их максимум будет обеспечивать максимальное использование кольцевого паза в СМ.

Список литературы:

- 1. ТУ 6391-002-55177547-2005 Магниты постоянные на основе сплава неодим-железо-бор марки ЧЗ6Р. Технические условия.
- 2. ТУ 6391-005-55177547-2008 Магниты постоянные на основе сплава кобальт-самарий Технические условия.
- Казаков Ю.Б., Морозов Н.А., Страдомский Ю.И., Перминов С.М. Герметизаторы на основе нанодисперсных магнитных жидкостей и их моделирование,-Иваново, ГОУВПО ИГЭУ, 2010.-184с.
- 4. ГОСТ 2.307 -2011 ЕСКД. Нанесение размеров и предельных отклонений.
- 5. Штойер Р. Многокритериальная оптимизация. Теория, вычисления и приложения: Пер. с англ.- М.: Радио и связь, 1992. 504 с.

РОБОТИЗИРОВАННЫЙ ПОГРУЗЧИК ДЛЯ МАНИПУЛИРОВАНИЯ ГРУЗОМ

Соснин Руслан Рустамович

магистрант, кафедра информационных технологий и энергетических систем, группа: Мехатроника и робототехника, Казанский (Приволжский) федеральный университет, РФ, г. Набережные Челны E-mail: <u>rus-sosnin@mail.ru</u>

ROBOTIC LOADER FOR MANIPULATING LOADS

Ruslan Sosnin

АННОТАЦИЯ

«Роботизированный погрузчик для манипулирования грузом» даст возможность переместить организацию в новейшую научно техническую степень. С одной стороны, результат автоматизации и роботизации изготовления дает существенное снижение трудозатрат, Научное издание

ВОПРОСЫ ТЕХНИЧЕСКИХ И ФИЗИКО-МАТЕМАТИЧЕСКИХ НАУК В СВЕТЕ СОВРЕМЕННЫХ ИССЛЕДОВАНИЙ

Сборник статей по материалам

XXVIII международной научно-практической конференции

№ 6 (22)

Июнь 2020 г.

Подписано в печать 04.07.20. Формат бумаги 60х84/16. Бумага офсет №1. Гарнитура Times. Печать цифровая. Усл. печ. л. 5,375. Тираж 550 экз.

Издательство ООО «СибАК» 630049, г. Новосибирск, Красный проспект, 165, офис 5. E-mail: mail@sibac.info

Отпечатано в полном соответствии с качеством предоставленного оригинал-макета в типографии «Allprint» 630004, г. Новосибирск, Вокзальная магистраль, 3